Solving differential Riccati equations: A nonlinear space-time method using tensor trains

نویسندگان

چکیده

Differential Riccati equations are at the heart of many applications in control theory. They time-dependent, matrix-valued, and particular nonlinear that require special methods for their solution. Low-rank have been used heavily computing a low-rank solution every step time-discretization. We propose use an all-at-once space-time leading to large problem which we Newton–Kleinman iteration. Approximating higher-dimensional tensor form requires fewer degrees freedom operator, gives faster numerical method. Numerical experiments demonstrate storage reduction up factor 100.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solving Differential Riccati Equations Using BDF Methods

This technical report describes three approaches for solving the Differential Riccati Equation (DRE), by means of the Backward Differentiation Formula (BDF) and resolution of the corresponding implicit equation, using Newton's method. These approaches are based on: GMRES method, resolution of Sylvester equation and fixed point method. The role and use of DRE is especially important in optimal c...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

A Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)

Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algebra, Control and Optimization

سال: 2021

ISSN: ['2155-3297', '2155-3289']

DOI: https://doi.org/10.3934/naco.2020034